Elevated CO2 decreases the Photorespiratory NH3 production but does not decrease the NH3 compensation point in rice leaves.
نویسندگان
چکیده
The exchange of gaseous NH3 between the atmosphere and plants plays a pivotal role in controlling the global NH3 cycle. Photorespiration generates NH3 through oxygenation instead of carboxylation by the CO2-fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). The future increase in the atmospheric CO2 concentration, [CO2], is expected to reduce plant NH3 production by suppressing RuBisCO oxygenation (Vo). We measured the net leaf NH3 uptake rate (FNH3) across NH3 concentrations in the air (na) ranging from 0.2 to 1.6 nmol mol(-1) at three [CO2] values (190, 360 and 750 µmol mol(-1)) using rice plants. We analyzed leaf NH3 gas exchange using a custom-made whole-leaf chamber system, and determined the NH3 compensation point (γ), a measure of potential NH3 emission, as the x-intercept of the linear relationship of FNH3 as a function of na. Our γ values were lower than those reported for other plant species. γ did not decrease under elevated [CO2], although leaf NH4 (+) content decreased with decreasing Vo at higher [CO2]. This was also the case for γ estimated from the pH and NH4 (+) concentration of the leaf apoplast solution (γ'). γ' of rice plants, grown at elevated [CO2] for months in a free-air CO2 enrichment facility, was also not decreased by elevated [CO2]. These results suggest that suppression of RuBisCO oxygenation by elevated [CO2] does not decrease potential leaf NH3 emission in rice plants.
منابع مشابه
Elevated atmospheric CO2 decreases the ammonia compensation point of barley plants
The ammonia compensation point ( ) controls the direction and magnitude of NH3 exchange between plant leaves and the atmosphere. Very limited information is currently available on how responds to anticipated climate changes. Young barley plants were grown for 2 weeks at ambient (400 μmol mol(-1)) or elevated (800 μmol mol(-1)) CO2 concentration with or NH4NO3 as the nitrogen source. The concent...
متن کاملEstimation of UNIQUAC-NRF Model Parameters for NH3-CO2-H2O System
Vapor-liquid equilibrium in NH3-CO2-H2O system at high pressures has been studied. The UNIQUAC-NRF model for this system was extended by using the Goppert 4 maurer reported datas. Since the system contains molecules and ionic species the binary interaction parameters considered, where those are of molecule-molecule, molecule-ion and ion-ion types. These interaction parameters are taken as c...
متن کاملDefining the Molecular Basis for Energy Balance in Marine Diatoms under Fluctuating Environmental Conditions
The effectiveness of photorespiration as a protective mechanism against photooxidative stress and as a necessary pathway for the dissipation of excess photochemical energy in vascular C3 plants has been established (Kozaki and Takeba 1996, Wingler et al. 2000). Evidence for and against a functional photorespiratory pathway in photosynthetic chromoalveolates such as diatoms has been extensively ...
متن کاملThe Relationship between Nh3 Accumulation and Photorespiratory Activity
Additions of methionine sulfoximine (MSX), an inhibitor of glutamine synthetase (GS), result in an increase in NH13 in seedling leaves of Cs (wheat I Triticum aestiwn cv. Kolibril and barley [Hordeum vulgare var Perthi) and C4 (corn IZea mays W6A x W182E1 and sorghum [Sorghun Vulgare var MK3001) plants. NH13 accumulation is higher in C3 (about 17.8 micromoles per gram fresh weight per hour) tha...
متن کاملAn effective and ecofriendly suggestion to decrease atmospheric carbon dioxide by using NH3 gas
Global warming is increasing permanently, because the concentration of CO2 in the atmosphere is rising continuously. According to National Oceanographic and Atmospheric Administration, the concentration of CO2 in the atmosphere was 407 ppm in June 2016 and 413 ppm in April 2017 as a last record for now. If the effects of other greenhouse gases, such as CH4, N<su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant & cell physiology
دوره 55 9 شماره
صفحات -
تاریخ انتشار 2014